

TEST REPORT

NEMA standard publication No. CC 3/ANSI C-119.4-2011 Heat Cycle of Automatic Tension Joint Splices Mechanical of Automatic Tension Joint Splices

n , ~ 10 , ~ 10 ,		S_1 , $S_1 S_2$, $S_2 S_3$, $S_3 S_4$, $S_4 S_3$, $S_4 S_4$, $S_4 S_4$, $S_4 S_5$, $S_4 S_5$, $S_4 S_5$, $S_5 S_5$, $S_$
Report Number.		TMC180219001-R
, , ,		
Date of issue	1	2018, Feb. 19
Total number of pages	:	33 pages
NAME OF	1	Guangzhou Hotlink Hardware Co. Ltd
MANUFACTURER		Address: Building A, Xinzhuang Industrial Zone, No.84,
C		TianYuan Road, Yonghe Economic & Development
No allo allo	- 9	District, Guangzhou, China
. Lu Lu		Tel: +86-20-82981980/32226973-8202, 8208
		Fax: +86-20-82981887
. (. (. (. (Email: danielxu@gzhotlink.com
SAMPLE SUPPLIED	- 3	Four Samples of Auto-Joint Splice for #3 ACSR Conductor
SAMPLE SUPPLIED	1	HAS42.
		Four Samples of Auto-Joint Splice for 1/0 ACSR Conductor
		HAS1020
No Williams	25	Four Samples of Auto-Joint Splice for 4/0ACSR Conductor
1. 1.		HAS3040
		Four Samples of Auto-Joint Splice for #477 MCM ACSR
		Conductor HAS477
The Fills	~ 5	Four Samples of Compression Sleeve for #636 MCM ACSR
.//.		Conductor HAS636
TEST CONDUCTED BY	:	TMC Testing Services (Shenzhen) Co., Ltd.
STANDERD	. 47	NEMA standard publication No. CC 3/ANSI C-119.4-2011
STANDERD	1.	NEWA Standard publication No. CC 3/ANSI C-119.4-2011
Test prepared by: Seven Liu		Head of Lab: Lemon Rao
- WILL		The the the the
Seven Lin	1	
Oim & Coal		The second of the same
Sign & Seal	_23	Sign & Seal

Heat Cycle of Automatic Tension Joint Splices

1.0 Introduction

Guangzhou Hotlink Hardware Co., Ltd. requested to carry out 500 heat cycle tests on a set of supplied samples of Auto Joint Splices for #3 ACSR HAS42, 1/0 ACSR HAS1020, 4/0 ACSR HAS3040, #477 MCM ACSR HAS477, and Compression Sleeve for #636 MCM ACSR HAS636, provide the test report. In response to the request, the supplied samples were tested in the facilities of the TMC Testing Services(Shenzhen) Co., Ltd. conducted the requested heat cycle tests as per NEMA standard publication No. CC 3/ANSI C-119.4-2011 and the report has been prepared based on the finding of the tests.

2.0 Test Samples and Loops

There were five types of auto joint splices having FOUR samples of each type as listed in Table-1

Table 1: Sample Specification

SL No.	Catalog Number	Item Description	No. of Samples	Loops
1	HAS42	Auto Joint Splice for #3 ACSR Conductor	4	Loop 1
2	HAS1020	Auto Joint Splice for 1/0 ACSR Conductor	4	Loop 2
3	HAS3040	Auto Joint Splice for 4/0 ACSR Conductor	MC4	Loop 3
4	HAS477	Auto Joint Splice for #477 MCM ACSR Conductor	4	Loop 4
5	HAS636	Compression Sleeve for #636 MCM ACSR Conductor	4	Loop 5

For each category of samples, a loop is made as per NEMA standard publication No. CC-3/ ANSI C-119.4-2011 standard. Each loop comprises 4 splices and 6 equalizers. The loop 1-3 consists of a series circuit with 12 inch length of the respective ACSR conductor between any equalization point and auto joint splice. In each loop a control conductor was used which was of the same material but with 24 inch in length. Also, in each loop exposed conductor length was 24 inch and used the same material.

The loop 4-5 consists of a series circuit with 24 inch length of the respective ACSR conductor between any equalization point and auto joint splice. In each loop a control conductor was used which was of the same material but with 48 inch in length. Also, in each loop exposed conductor length was 48 inch and used the same material

3.0 Test Setup and Methods

An automated setup for the test along with current injectors. Switching ON/OFF of the ac supply at one-hour interval for the cases of Loop 1, 2 and 3 were performed automatically and Switching ON/OFF of the ac supply at one and half hour interval for the cases of Loop 4 and 5 were performed automatically. Temperature is measured manually using a digital sensor. All resistance measurement was performed manually with aprecession $\mu\Omega$ -Meter. For Loop 1, Loop 2, Loop 3, Loop 4 & Loop 5 measurements were taken initially and at the following cycle: 25, 50, 75, 100, 125, 165, 205, 250, 325, 405 and 500 +/- 5 cycles. All resistance measurements were converted to the reference at 20 °C temperature.

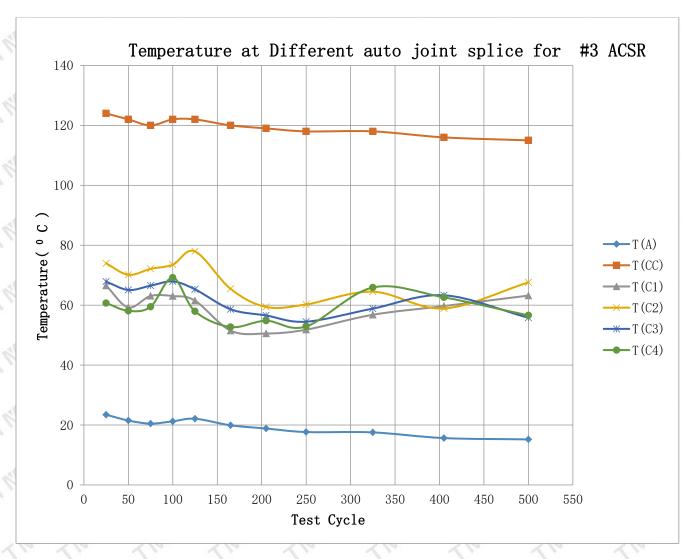
The circuits were energized with a current of approximately 175, 240, 385, 700 & 825 Amps for loops one, two, three, four & five respectively. The temperature of the control conductor was maintained near $100 \, \text{C}$ above ambient temperature. The temperature of the control conductor and the auto joint splices were taken during the cycles preceding the resistance measurements.

4.0 Test Results

The ambient temperature and temperatures of the auto joint splices and control conductors were monitored manually. The auto joint splices resistance at the end of OFF time are measured manually with a precision $\mu\Omega$ -Meter. The test results are provided in tabular as well as graphical forms.

4.1 Loop 1: Test Loop with auto joint splice HAS42 for #3 ACSR

The temperature and resistance values obtained during the tests are shown in Table 2 and Table 3, respectively.


Table 2: Test data of auto joint splices Temperature for Loop 1 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 175A

Cycle Number	Ambient (°C)	Control Conductor (⁰ C)	Auto jo	oint splice		ratures	Temp	erature I	Difference	(°C)
	· /	, ,	C1	C2	C3	C4	C1	C2	C3	C4
25	23.44	124.0	92.4	70.25	79.2	80.24	31.6	53.75	44.8	43.76
50	21.50	122.0	90.52	67.53	76.8	74.81	31.48	54.47	45.2	47.19
75	20.47	120.0	83.8	63.3	78.9	80.94	36.2	56.7	41.1	39.06
100	21.23	122.0	77.5	56.44	65.6	69.73	44.5	65.56	56.4	52.27
125	22.10	122.0	88.7	57.3	75.8	66.02	33.3	64.7	46.2	55.98
165	19.91	120.0	78.2	59.87	67.41	69.36	41.8	60.13	52.59	50.64
205	18.83	119.0	72.8	54.66	62.62	68.11	46.2	64.34	56.38	50.89
250	17.66	118.0	71.6	52.4	66.6	72.1	46.4	65.6	51.4	45.9
325	17.54	118.0	74.8	59.52	64.86	69.42	43.2	58.48	53.14	48.58
405	15.64	116.0	75.47	60.3	74.6	65.53	40.53	55.7	41.4	50.47
500	15.20	116.0	82.7	53.6	71.5	72.61	33.3	62.4	44.5	43.39
SIC -	WINC.	Average	e Temper	ature Dif	ference	~	38.95	60.16	48.46	48.01

Comments: The auto joint splices temperatures are found less than the temperature of the control conductor. The auto joint splices **HAS42** for #3 ACSR conductor performance are satisfactory.

Table 2 Chart

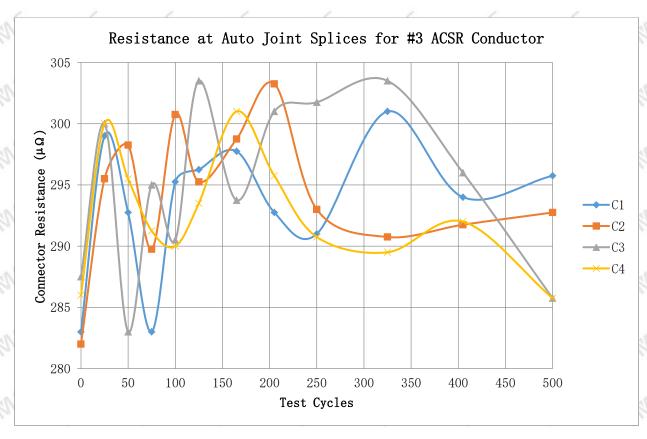


Table 3: Test data of auto joint splices Resistance for Loop 1 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 175A

Cycle Numbe r	Ambien t (°C)	Control Conducto r (°C)			ices Resist icro Ohms		Auto joint splices Resistance (Corrected to 20^{0} C)) Micro Ohms ($\mu\Omega$)				
			C1	C2	C3	C4	C1	C2	СЗ	C4	
0	23.20	23.30	283	282	287.5	286	281.20	280.21	285.67	284.18	
25	23.44	124.0	299	295.5	300	300	300.44	296.93	301.45	301.45	
50	21.50	122.0	292.75	298.25	283	295.5	294.16	299.69	281.84	294.92	
75	20.47	120.0	283	289.75	295	291.25	285.51	292.32	297.62	293.84	
100	21.23	122.0	295.25	300.75	290.5	290	295.25	300.75	290.50	290.00	
125	22.10	122.0	296.25	295.25	303.5	293.5	294.48	293.49	301.69	291.75	
165	19.91	120.0	297.75	298.75	293.75	301	294.45	295.44	390.50	297.67	
205	18.83	119.0	292.75	303.25	301	295.75	290.66	301.08	302.81	293.64	
250	17.66	118.0	291	293	301.75	290.75	290.65	292.65	301.39	290.40	
325	17.54	118.0	301	290.75	303.5	289.5	299.06	288.90	301.57	287.66	
405	15.64	116.0	294	291.75	296	292	289.48	287.27	291.45	287.51	
500	15.20	116.0	295.75	292.75	285.75	285.75	289.16	286.22	279.38	279.38	
-				A	verage R	esistance	292.04	292.91	293.82	291.03	
nC.	MC	NAC.	Mini	mum Acc	eptable R	esistance	277.44	278.27	279.13	276.48	
	11.	1/4	11	MaxAll	owable R	esistance	306.65	307.56	308.51	305.58	

Comments: The resistances of auto joint splices remain within maximum and minimum allowable limits throughout the test cycle (refer Table 3). The resistance variations of auto joint splices **HAS42** for #3 ACSR conductor during the heat cycle test are satisfactory.

Table 3 Chart

4.2 Loop 2: Test Loop with auto joint splice HAS1020 for 1/0 ACSR

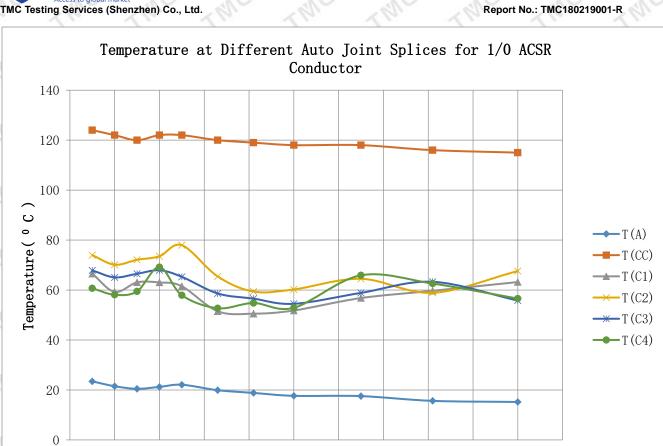

The temperature and resistance values obtained during the tests are shown in Table 4 and Table 5, respectively.

Table 4: Test data of auto joint splices Temperature for loop 2 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 240A

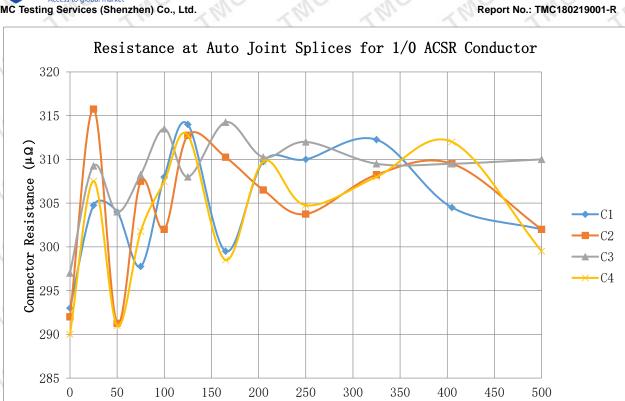
Cycle Number	Ambient (°C)	Control conductor			nt splice tures (⁰ C		Temp	Difference	e (⁰ C)	
an C	an C	(⁰ C)	C1	C2	C3	C4	C1	C2	С3	C4
25	23.44	124.0	56.4	70.7	69.9	71.01	67.6	53.3	54.1	52.99
50	21.50	122.0	66.6	67.3	71.6	70.97	55.4	54.7	50.4	51.03
75	20.47	120.0	68.5	61.55	72.7	69.99	51.5	58.45	47.3	50.01
100	21.23	122.0	69.71	60.16	65.49	65.78	52.29	61.84	56.51	56.22
125	22.10	122.0	66.24	62.91	63.66	58.42	55.76	59.09	58.34	63.58
165	19.91	120.0	62.26	56.33	60.08	59.21	57.74	63.67	59.92	60.79
205	18.83	119.0	50.42	50.37	55.1	57.11	68.58	68.63	63.9	61.89
250	17.66	118.0	54.03	50.34	54.99	61.2	63.97	67.66	63.01	56.8
325	17.54	118.0	52.14	47.21	54.9	57.1	65.86	70.79	63.1	60.9
405	15.64	116.0	51.23	49.5	58.94	51.73	64.77	66.5	57.06	64.27
500	15.20	116.0	64.71	56.72	63.57	65.59	50.29	58.28	51.43	49.41
		Average	e Temp	erature	Differe	nce	59.43	62.08	56.82	57.08

Comments: The auto joint splices temperatures are found less than the temperature of the control conductor. The auto joint splices **HAS1020** for 1/0 ACSR conductor performance are satisfactory.

Table 4 Chart

Test Cycle

Table 5: Test data of auto joint splices Resistance for Loop 2 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 240A


Report No.: TMC180219001-R

Cycle Number	Ambient (°C)	Control conductor (°C)		joint spli ured) Mi			Auto joint splices Resistance (Corrected to 20^0 C) (Micro Ohms $(\mu\Omega)$					
. C		. C	C1	C2	C3	C4	C1	C2	С3	C4		
0	23.20	23.30	293	292	297	290	291.14	290.14	295.11	288.16		
25	23.44	124.0	304.75	315.75	309.25	307.5	306.22	317.27	310.74	308.98		
50	21.50	122.0	304	291.25	304	291	305.47	292.65	305.47	292.40		
75	20.47	120.0	297.75	307.5	308.25	301.75	300.39	310.23	310.99	304.43		
100	21.23	122.0	308	302	313.5	307.5	308.00	302.00	313.50	307.50		
125	22.10	122.0	314	312.75	308	312.75	312.13	310.88	306.16	310.44		
165	19.91	120.0	299.5	310.25	314.25	298.5	296.18	306.81	310.77	295.19		
205	18.83	119.0	309.75	306.5	310.25	309.75	307.54	304.31	308.03	307.54		
250	17.66	118.0	310	303.75	312	304.75	309.63	303.39	311.63	304.38		
325	17.54	118.0	312.25	308.25	309.5	308	310.26	306.29	307.53	306.04		
405	15.64	116.0	304.5	309.5	309.5	312	299.82	304.75	304.75	307.21		
500	15.20	116.0	302	302	310	299.5	296.27	295.27	303.09	292.82		
in C	JAC .	an C	-InC	Ave	rage Res	sistance	303.50	303.67	307.31	302.13		
(A) \	Ly.	N	Iinimum	Accept	able Res	sistance	288.33	288.48	291.95	287.02		
-	-	-	Ma	x Allow	able Res	sistance	318.68	318.85	322.68	317.24		

Comments: The resistances of auto joint splices remain within maximum and minimum allowable limits throughout the test cycle (refer Table 5). The resistance variations of auto joint splices HAS1020 for 1/0 ACSR conductor during the heat cycle test are satisfactory.

Page 9 of 33

Table 5 Chart

Test Cycles

4.3 Loop 3: Test Loop with auto joint splice HAS3040 for 4/0 ACSR

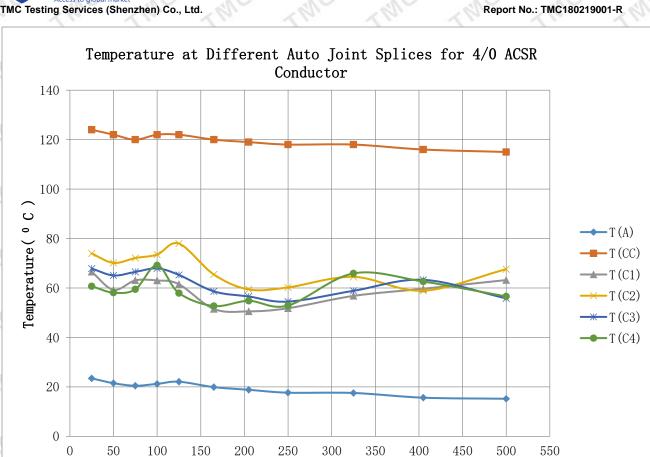

The temperature and resistance values obtained during the tests are shown in Table 6 and Table 7, respectively

Table 6: Test data of auto joint splices Temperature for Loop 3 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 385A.

Cycle Number	Ambient (°C)	Control Conductor		Auto joir Tempera			Temperature Difference (°C)					
		(°C)	C1	C2	C3	C4	C1	C2	C3	C4		
25	23.44	124.0	66.54	73.95	67.86	60.7	57.46	50.05	56.14	63.3		
50	21.50	122.0	59.25	70.14	65.07	58.11	62.75	51.86	56.93	63.89		
75	20.47	120.0	63.08	72.12	66.51	59.46	56.92	47.88	53.49	60.54		
100	21.23	122.0	63.04	73.52	67.92	69.17	58.96	48.48	54.08	52.83		
125	22.10	122.0	61.51	77.95	65.29	57.93	60.49	44.05	56.71	64.07		
165	19.91	120.0	51.51	65.45	58.63	52.71	68.49	54.55	61.37	67.29		
205	18.83	119.0	50.54	59.41	56.56	54.8	68.46	59.59	62.44	64.2		
250	17.66	118.0	51.81	60.24	54.49	52.9	66.19	57.76	63.51	65.1		
325	17.54	118.0	56.8	64.5	58.86	65.9	61.2	53.5	59.14	52.1		
405	15.64	116.0	59.7	58.9	63.3	62.6	56.3	57.1	52.7	53.4		
500	15.20	116.0	63.2	67.6	55.8	56.59	51.8	47.4	59.2	58.41		
W.C.	NAC 6	Averag	ge Tempe	rature D	ifferenc	e	60.82	52.02	57.79	60.46		

Comments: The auto joint splices temperatures are found lesser than the temperature of the control conductor. The auto joint splices **HAS3040** for 4/0 ACSR conductor performance are satisfactory.

Table 6 Chart

Test Cycle

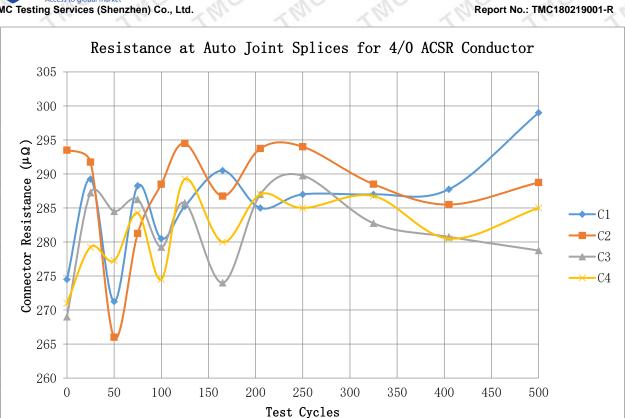


Table 7: Test data of auto joint splices Resistance for Loop 3 with current cycle (1 Hour ON and 1 Hour OFF) and test current of 385A.

Cycle Number	Ambient (°C)	Control conductor (°C)			ices Resis icro Ohm		Auto joint splices Resistance (Corrected to $20^0~C$)) Micro Ohms ($\mu\Omega$)				
	7.		C1	C2	С3	C4	C1	C2	С3	C4	
0	23.20	23.30	274.5	293.5	269	271	272.75	291.63	267.29	269.28	
25	23.44	124.0	289.25	291.75	287.25	279.25	290.65	293.16	288.64	280.60	
50	21.50	122.0	271.25	266	284.5	277.25	272.56	267.28	285.87	278.59	
75	20.47	120.0	288.25	281.25	286.25	284.25	290.81	283.75	288.79	286.77	
100	21.23	122.0	280.5	288.5	279.25	274.5	280.50	288.50	279.25	274.50	
125	22.10	122.0	285.25	294.5	285.75	289.25	283.55	292.74	284.05	287.52	
165	19.91	120.0	290.5	286.75	274	280	287.28	283.57	270.97	276.90	
205	18.83	119.0	285	293.75	287	287	282.96	291.65	284.95	284.95	
250	17.66	118.0	287	294	289.75	285	286.66	293.65	289.40	284.65	
325	17.54	118.0	287	288.5	282.75	286.75	285.17	286.67	280.95	284.93	
405	15.64	116.0	287.75	285.5	280.75	280.5	283.33	281.11	276.44	276.19	
500	15.20	116.0	299	288.75	278.75	285	292.33	282.31	272.54	278.65	
				Av	erage Re	sistance	284.05	286.34	280.76	280.29	
NC.	MC	NIC	Minim	ım Accej	otable Re	sistance	269.84	272.02	266.72	266.28	
		7.	I	Max Allo	wable Re	sistance	298.25	300.65	294.80	294.31	

Comments: The resistances of auto joint splices remain within maximum and minimum allowable limits throughout the test cycle (refer Table 7). The resistance variations of auto joint splices **HAS3040** for 4/0 ACSR conductor during the heat cycle test are satisfactory.

Table 7 Chart

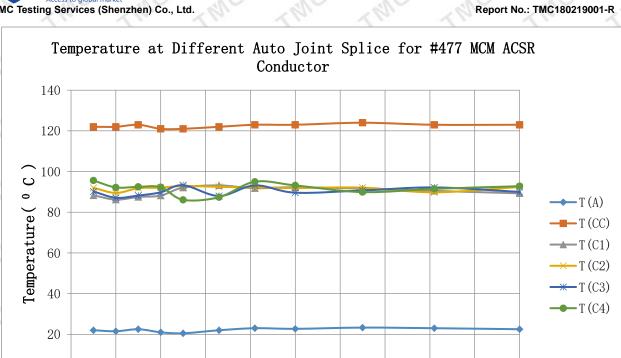
4.4 Loop 4: Test Loop with auto joint splice HAS477 for #477 MCM ACSR

The temperature and resistance values obtained during the tests are shown in Table 8 and Table 9, respectively

Table 8: Test data of auto joint splices Temperature for Loop 4 with current cycle (1.5 Hour ON and 1.5 Hour OFF) and test current of 700A.

Cycle Number	Ambient (°C)	Control Conductor (⁰ C)	Auto jo	int splice (⁰ (_	ratures	Temp	perature I	Difference	e (⁰ C)
			C1	C2	C3	C4	C1	C2	C3	C4
25	22.00	122.00	88.3	92.0	90.2	95.6	33.7	30.0	31.8	26.4
50	21.50	122.00	86.2	89.5	87.1	92.2	35.8	32.5	34.9	29.8
75	22.50	123.00	87.5	91.8	88.2	92.5	35.5	31.2	34.8	30.5
100	21.00	121.00	88.2	92.1	89.8	92.3	32.8	28.9	31.2	28.7
125	20.50	121.00	92.1	92.9	93.3	86.1	28.9	28.1	27.7	34.9
165	22.00	122.00	93.2	92.5	88.0	87.4	28.8	29.5	34.0	34.6
205	23.00	123.00	91.8	92.2	93.2	95.0	31.2	30.8	29.8	28.0
250	22.70	123.00	92.3	91.9	89.6	93.2	30.7	31.1	33.4	29.8
325	23.30	124.00	91.6	92.1	90.7	89.9	32.4	31.9	33.3	34.1
405	23.00	123.00	90.5	89.8	92.2	91.5	32.5	33.2	30.8	31.5
500	22.50	123.00	89.3	92.4	90.0	92.8	33.7	30.6	33.0	30.2
SUC.	·MC	Average	e Temper	ature Di	fference	C	32.3	30.7	32.2	30.7

Comments: The auto joint splices temperatures are found less than the temperature of the control conductor. The performance of auto joint splices **HAS477** for # 477 MCM ACSR conductors are satisfactory.


0 _

100

50

150

200

Table 8 Chart

300

350

400

450

250

Test Cycle

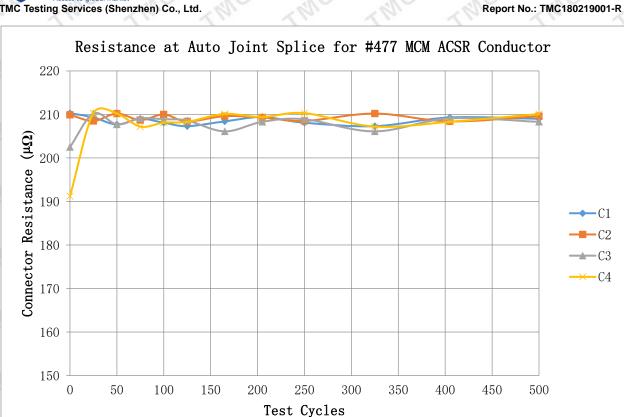

500

Table 9: Test data of auto joint splices Resistance with current cycle (1.5 Hour ON and 1.5 Hour OFF) and test current of 700A

Cycle Number	Ambient (°C)	Control conductor (°C)	Res	Auto joi istance Iicro O	(Measu	red)	Auto joint splices Resistance (Corrected to 20^{0} C)) Micro Ohms ($\mu\Omega$)				
			C1	C2	С3	C4	C1	C2	C3	C4	
0	20.8	21.0	210.3	209.9	202.5	191.2	201.359	201.024	193.871	183.118	
25	21.50	122.0	209.3	208.5	210.2	210.3	199.106	198.364	200.010	200.096	
50	22.50	123.0	207.7	210.2	207.7	210.2	197.701	200.110	197.682	200.081	
75	21.00	121.4	209.0	208.7	209.1	207.2	200.223	199.964	200.290	198.518	
100	20.50	121.0	208.1	210.0	208.9	208.1	198.002	199.782	198.735	198.031	
125	22.00	122.0	207.3	208.4	208.6	208.3	197.587	198.665	198.835	198.531	
165	23.00	123.0	208.4	209.6	206.1	210.1	197.841	198.961	198.534	199.445	
205	22.70	123.0	209.4	209.3	208.3	209.4	199.239	199.154	198.231	199.277	
250	23.30	124.0	208.1	208.5	208.9	210.3	199.701	198.660	197.680	198.525	
325	23.00	124.0	207.3	210.2	206.1	207.2	199.095	199.825	198.800	199.345	
405	22.50	123.0	209.3	208.4	209.1	208.3	197.587	200.367	198.325	200.081	
500	21.50	122.0	209.0	209.6	208.3	210.1	199.239	199.456	200.850	198.125	
				Aver	age Res	istance	198.9	199.5	198.4	197.7	
sh C	MC	Mi	nimum	Accepta	ble Res	istance	188.9	189.5	188.4	187.7	
~	La.	110.	Max	Allowa	ble Res	istance	208.9	209.5	208.4	207.7	

Comments: The resistances of auto joint splices remain within maximum and minimum allowable limits throughout the test cycle (refer Table 3). The resistance variations of auto joint splices HAS477 for #477 MCM ACSR Conductor during the heat cycle test are satisfactory.

Table 9 Chart

4.5 Loop 5: Test Loop with Compression Sleeve HAS636 for #636 MCM ACSR Conductor

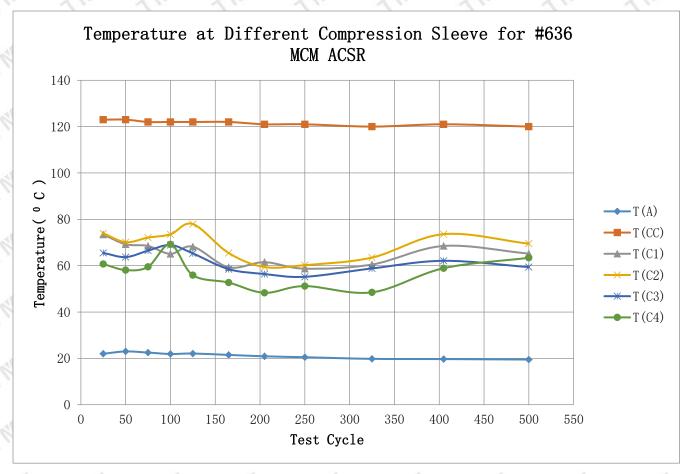

The temperature and resistance values obtained during the tests are shown in Table 10 and Table 11, respectively

Table 10: Test data of Compression Sleeve Temperature for Loop 5 with current cycle (1.5 Hour ON and 1.5 Hour OFF) and test current of 825A.

									1.1.2	- 4
Cycle Number	Ambient (°C)	Control Conductor	Auto joi	nt splices To	emperatui	res (°C)	Temp	oerature D	ifference	e (⁰ C)
		(°C)	C1	C2	C3	C4	C1	C2	C3	C4
25	22.0	123.0	73.4	73.95	65.5	60.7	49.6	49.05	57.5	62.3
50	23.0	123.0	69.25	70.14	63.7	58.1	53.75	52.86	59.3	64.9
75	22.5	122.0	68.5	72.12	66.5	59.5	53.5	49.88	55.5	62.5
100	21.9	122.0	65.1	73.52	68.9	69.2	56.9	48.48	53.1	52.8
125	22.1	122.0	68.2	77.95	65.3	55.9	53.8	44.05	56.7	66.1
165	21.5	122.0	59.3	65.45	58.5	52.7	62.7	56.55	63.5	69.3
205	20.9	121.0	61.5	59.41	56.4	48.3	59.5	61.59	64.6	72.7
250	20.5	121.0	58.7	60.24	55.2	51.2	62.3	60.76	65.8	69.8
325	19.8	120.0	60.5	63.5	58.8	48.5	59.5	56.5	61.2	71.5
405	19.7	121.0	68.5	73.6	62.1	58.9	52.5	47.4	58.9	62.1
500	19.5	120.0	65.2	69.5	59.4	63.4	54.8	50.5	60.6	56.6
10.	La.	Ave	rage Temp	perature D	ifference		56.25	52.51	59.7	64.6

Comments: The Compression Sleeves temperatures are found less than the temperature of the control conductor. The performance of Compression Sleeves **HAS636** for # 636 MCM ACSR conductors are satisfactory.

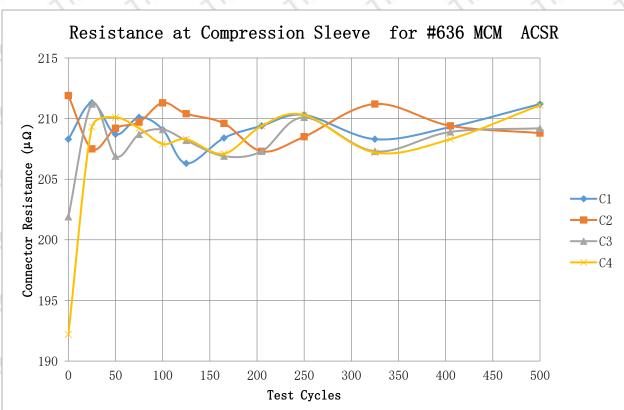

Table 10 Chart

Table 11: Test data of Compression Sleeve Resistance with current cycle (1.5 Hour ON and 1.5 Hour OFF) and test current of 825A

Cycle Number	Ambient (°C)	Control conductor (°C)	Res	Auto joi istance Iicro O	(Measu	red)	Auto joint splices Resistance (Corrected to 20^0 C)) Micro Ohms ($\mu\Omega$)				
			C1	C2	С3	C4	C1	C2	С3	C4	
0	20.8	21.0	208.3	211.9	201.9	192.2	201.359	201.024	193.871	183.118	
25	22.0	123.0	211.3	207.5	211.2	209.3	199.106	198.364	200.010	200.096	
50	23.0	123.0	208.7	209.2	206.9	210.1	197.701	200.110	197.682	200.081	
75	22.5	122.0	210.1	209.7	208.7	209.2	200.223	199.964	200.290	198.518	
100	21.9	122.0	209.1	211.3	209.1	207.9	198.002	199.782	198.735	198.031	
125	22.1	122.0	206.3	210.4	208.2	208.3	197.587	198.665	198.835	198.531	
165	21.5	122.0	208.4	209.6	206.9	207.1	197.841	198.961	198.534	199.445	
205	20.9	121.0	209.4	207.3	207.3	209.4	199.239	199.154	198.231	199.277	
250	20.5	121.0	210.3	208.5	210.1	210.3	199.701	198.660	197.680	198.525	
325	19.8	120.0	208.3	211.2	207.3	207.2	199.095	199.825	198.800	199.345	
405	19.7	121.0	209.3	209.4	208.9	208.3	197.587	200.367	198.325	200.081	
500	19.5	120.0	211.2	208.8	209.2	211.1	199.239	199.456	200.850	198.125	
				Aver	age Res	istance	198.9	199.5	198.4	197.7	
anc anc	MC	Min	nimum .	Accepta	ble Res	istance	188.9	189.5	188.4	187.7	
	1,0	41,	Max	Allowa	ble Res	istance	208.9	209.5	208.4	207.7	

Comments: The resistances of Compression Sleeve remain within maximum and minimum allowable limits throughout the test cycle (refer Table 11). The resistance variations of Compression Sleeves **HAS636** for #636 MCM ACSR Conductor during the heat cycle test are satisfactory.

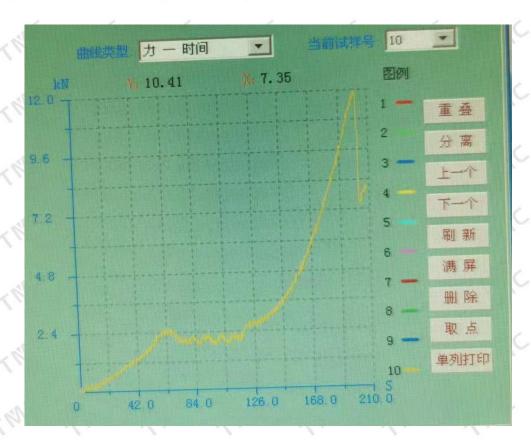
Table 11 Chart

5.0 Summary of Heat Cycle Testing

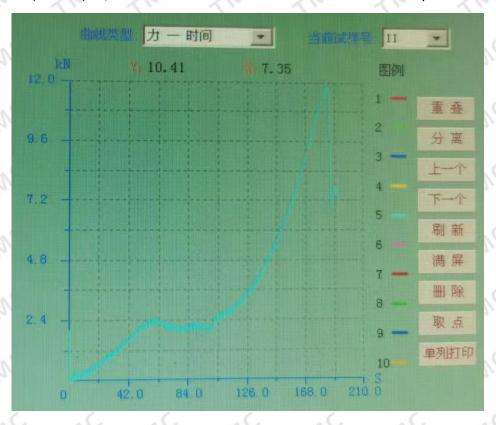
There was no evidence of physical damage to the test specimens after 500 heat cycles. The temperatures of the specimens did not exceed the temperature of the control conductor and the temperature difference between the control conductor and the specimens was stable between the 25th cycle and the 500th cycle for #3 ACSR HAS42, 1/0 ACSR HAS1020 & 4/0 ACSR HAS3040, #477 MCM ACSR HAS477 & # 636 MCM ACSR HAS636 conductor. Stability was achieved when the temperature difference between the control conductor and the specimen, including allowance for measurement error, is not more than 10 °C from the average of the measured temperature differences. The resistances of all specimens remain within 5% maximum and minimum allowable limits throughout the test cycle. The performances of samples for #3 ACSR HAS42, 1/0 ACSR HAS1020 & 4/0 ACSR HAS3040, #477 MCM ACSR HAS477 & # 636 MCM ACSR HAS636 conductor are satisfactory.

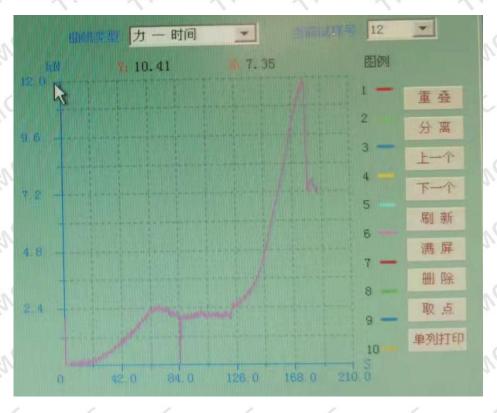
Mechanical of Automatic Tension Joint Splices

SUSTAINED LOAD TEST OF AUTO-JOINT SPLICE

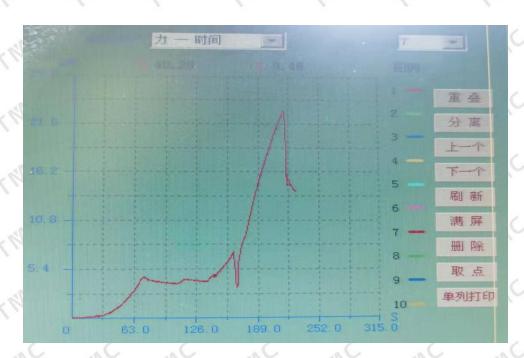

Standard Used: ANSIC-119.4 & NEMA CC-3

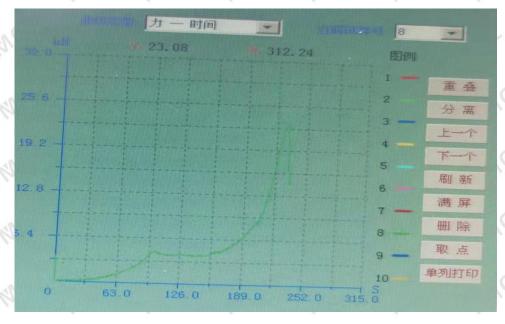
Type of	anc an	Conductor	Nominal	Sustained Load	No. of	Duration	- MC
Test	Material	Dia	Breaking	(kN)	Specimen	of Test	Observation
	Tested	(mm)	Load	(77% + - 2%)	Tested	(Hours)	
		((kN)	of Nominal	-		
STC STE	No. 1/2.	1/2.	. 12	Breaking Load)	- Nin-	1/20	- NIL
V	Auto Joint	11	11	11.	11	11.	No Slippage
	Splice for # 3						has been
.(-	ACSR	7.17	10.21	7.66-8.07	3	168	Observed in
N.	Conductor	No.	10	I WILL	- 100		the Auto-
	1	.// .		7		-1.	Joint Splices
							during the
in C	10 10	C	C	C anc	-10		Test
19. ×	Auto Joint	. 10	. <	1. 10.	10.	1 Lu.	No Slippage
	Splice for 1/0						has been
7	ACSR	10.11	19.35	14.51-15.29	3	168	Observed in
Class-1:	Conductor	U 21	C 31	IC MIC	an C		the Auto-
Full	10. 14	1/10		110.	1/2		Joint Splices
Tension							during the
		2	(((Test
3/10	Auto Joint	TO VI	1	100	- 677	- 137	No Slippage
	Splice for 4/0	7.	7.	1.	1,	1.	has been
5231	ACSR	14.31	36.54	27.40-28.87	3	168	Observed in
	Conductor	C	C	Jn.)	- 10		the Auto-
31,	61. × 61	1 40	1	1 / 1/11	1 Bu	4 611	Joint Splices
	, ,						during the
- /		,					Test
anc.	Auto Joint	1/12	- m	- Mile	- The	-inc	No Slippage
(10. <	Splice for	1/1/2	110.	11/1/	1/1/2	11/11/11	has been
	#477 MCM			J#C. 1	:*:		Observed in
	ACSR	21.80	86.73	6983-6630	3	168	the Auto-
W.	Conductor	Vo.		I WILL	- NI		Joint Splices
	1	11.	7.	11.	1,	1.	during the
							Test
	Compression	C	C .	CC			No Slippage
31	Sleeve for #	TO Y	197	V M	× 611	× 10/1	has been
	636 MCM	25.15	111.90	83.93-88.40	3	168	Observed in
	ACSR	_	-				the
INC.	Conductor	C an	C at	ic inc	-10 C		Compression
M. Y	D. 14	10	1	1. 1. W.	11/21	1. Lu.	Sleeved
			-		- 5		during the
7	7	1	1	1			_
(C .	C	٠	- (during the Test


MAXIMUM TENSILE LOAD TEST OF AUTO-JOINT SPLICE Standard Used: ANSIC-119.4 & NEMACC-3

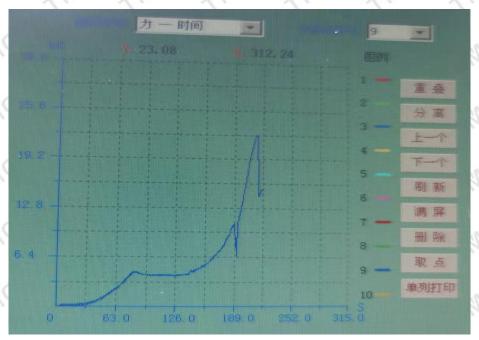

		-1 -				7. 7
	Material Tested	Conductor	Specimen	Ultimate	Average	250
Type of	((Dia	No.	Strength (kN)	Load (kN)	Comment
Test	W. W.	(mm)	1/20	- NA	- NIA	NA
Tensile	Auto Joint Splice	7.17	1	11.63	1.	No failure has
Strength	for # 3 ACSR		2	11.72	11.68	been observed in
. C.	Conductor			11.72		the Splices region
ELL .	41 - W	- Pill or	3	11.69	100	Mos

Maximum Load test of #3 ACSR conductor Chart 1

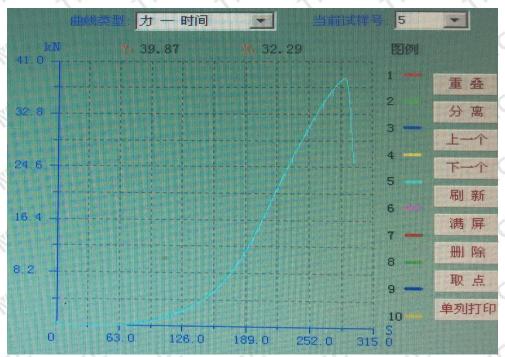

Maximum Load test of #3 ACSR conductor Chart 2


Maximum Load test of #3 ACSR conductor Chart 3

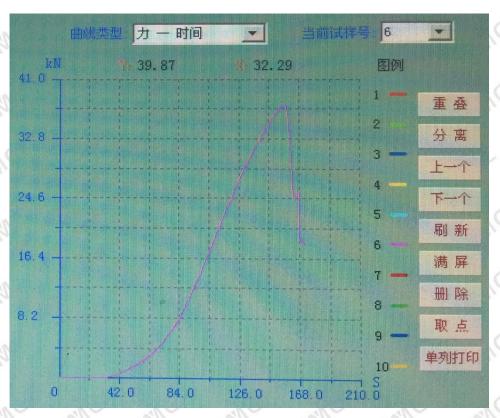
	1		-			
Type of	Material Tested	Conductor	Specimen	Ultimate	Average	
Test	((Dia	No.	Strength (kN)	Load (kN)	Comment
ST C	W. W.	(mm)	1/20	N/A	- NI	- WAL
Tensile	Auto Joint Splice	10.11	1	20.65	7.	No failure has
Strength	for 1/0 ACSR		2	20.93	20.59	been observed in
W.C	Conductor	- WC	3	20.18	MC	the Splices region


Maximum Load test of #1/0 ACSR conductor Chart 1

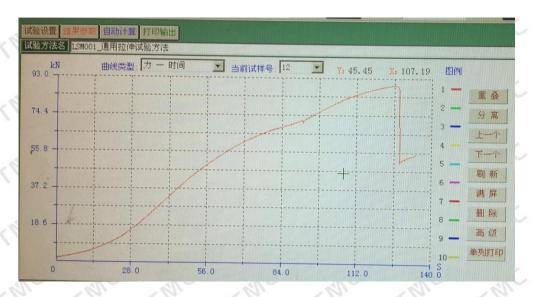
Maximum Load test of #1/0 ACSR conductor Chart 2


Maximum Load test of #1/0 ACSR conductor Chart 3

Type of	Material Tested	Conductor	Specimen	Ultimate	Average	
Test		Dia	No.	Strength (kN)	Load (kN)	Comment
1/2	W W	(mm)	120	- NIN-	- Nill	W. C.
Tensile	Auto Joint Splice	1.	1	38.78	1.	No failure has
Strength	for 4/0 ACSR	14.31	2	39.53	38.81	been observed in
W.C	Conductor	- WIC	3	38.12	MC	the Splices region

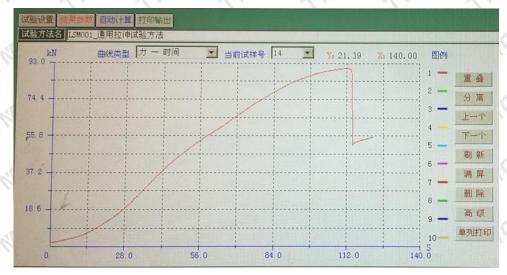


Maximum Load test of #4/0 ACSR conductor Chart 1


Maximum Load test of #4/0 ACSR conductor Chart 2

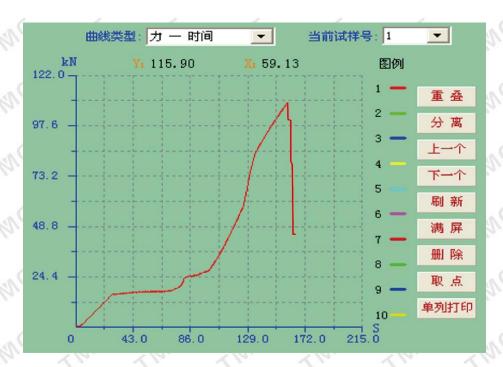

Maximum Load test of #4/0 ACSR conductor Chart 3

			-			
Type of	Material Tested	Conductor	Specimen	Ultimate	Average	
Test		Dia	No.	Strength (kN)	Load (kN)	Comment
ST -	W W	(mm)	1/20	- NA	- No	- WILL
Tensile	Auto Joint Splice	7.	1	89.35	1.	No failure has
Strength	for #477 MCM ACSR	21.80	2	89.96	89.90	been observed in the Splices region
EN-	Conductor	THE	3	90.40	1 MC	the Sphees legion

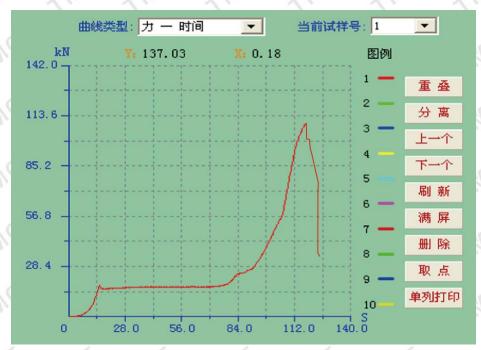


Maximum Load test of #477 MCM ACSR conductor Chart 1

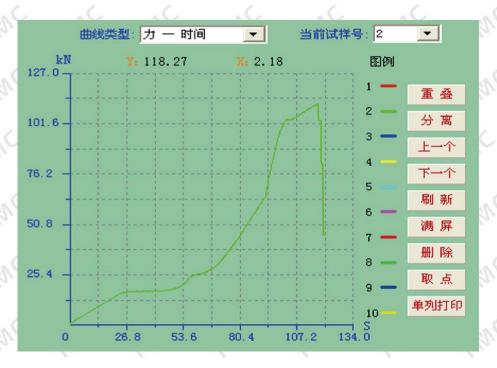
Maximum Load test of #477 MCM ACSR conductor Chart 2



Maximum Load test of #477 MCM ACSR conductor Chart 3



Maximum Load test of #636 MCM ACSR conductor test site photo


			-			
Type of	Material Tested	Conductor	Specimen	Ultimate	Average	270
Test		Dia	No.	Strength (kN)	Load (kN)	Comment
ST -	1/10 - 1/10	(mm)	1/20	- NI	- No	- WILL
Tensile	Compression	7.	1	109.40	1.	No failure has
Strength	Sleeve for # 636 MCM ACSR	25.15	2	111.18	109.94	been observed in the Sleeves region
ALC.	Conductor	THE	3	109.24	1 MC	the Siecves region

Maximum Load test of #636 MCM ACSR conductor Chart 1

Maximum Load test of #636 MCM ACSR conductor Chart 2

Maximum Load test of #636 MCM ACSR conductor Chart 3

-----End of Test Report-----

